Skip to main content

From Cats to Convolutional Neural Networks

Widely used in image recognition, Convolutional Neural Networks (CNNs) consist of multiple layers of neuron collection which look at small window of the input image, called receptive fields.

The history of Convolutional Neural Networks begins with a famous experiment “Receptive Fields of Single Neurons in the Cat’s Striate Cortex” conducted by Hubel and Wiesel. The experiment confirmed the long belief of neurobiologists and psychologists that the neurons in the brain act as feature detectors.

The first neural network model that drew inspiration from the hierarchy model of the visual nervous system proposed by Hubel and Wiesel was Neocognitron invented by Kunihiko Fukushima, and had the ability of performing unsupervised learning. Kunihiko Fukushima’s approach was commendable as it was the first neural network model having the capability of pattern recognition similar to human brain. The model gave a lot of insight and helped future understanding of the brain.

A successful advancement in Neocognitron was achieved by Yann LeCun and his team for isolated character recognition. The Convolutional Neural Network architecture was called LeNet-5 and it turned out much efficient than other classifiers. Today, in image classification, CNNs are preferred neural networks due to their in built feature learning mechanism.

CNNs have achieved the lowest error rate of 0.23 on MNIST database, a 34% improvement compared with networks [4]. CNNs are widely used in facial and object recognition.

CNNs have come a long way since the cat experiment, and are contributing a lot to make machines intelligent. Today CNNs are used in numerous applications including document recognition, object recognition, video surveillance, face detection.

References:

  1. Hubel, D. and Wiesel, T. (1959): Receptive fields of Single Neurones In The Cat’s Striate Cortex. Journal of Physiology, 195, 574-591.
  2. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202.
  3. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. (November, 1998): Gradient-based learning applied to document recognition. Proceedings of the IEEE.
  4. Ciresan, D.; Meier, U.; Schmidhuber, J., "Multi-column deep neural networks for image classification," in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on , vol., no., pp.3642-3649, 16-21 June 2012

Comments

  1. I generally check this kind of article and I found your article which is related to my interest.sequence to sequence learning with neural networks Genuinely it is good and instructive information. Thankful to you for sharing an article like this.

    ReplyDelete

Post a Comment

Popular posts from this blog

How is AI Saving the Future

Meanwhile the talk of AI being the number one risk of human extinction is going on, there are lot many ways it is helping humanity. Recent developments in Machine Learning are helping scientists to solve difficult problems ranging from climate change to finding the cure for cancer. It will be a daunting task for humans to understand enormous amount of data that is generated all over the world. Machine Learning is helping scientists to use algorithms that learn from data and find patterns. Below is a list of few of the problems AI is working on to help find solutions which otherwise would not have been possible: Cancer Diagnostics : Recently, scientists at University of California (UCLA) applied Deep Learning to extract features for achieving high accuracy in label-free cell classification. This technique will help in faster cancer diagnostics, and thus will save a lot of lives. Low Cost Renewable Energy : Artificial-intelligence is helping wind power forecasts of u...

In the World of Document Similarity

How does a human infer whether two documents are similar? This question has dazzled cognitive scientists, and is one area under which a lot of research is taking place. As of  now there is no product that is able to match or surpass human capability in finding the similarity in documents. But things are improving in this domain, and companies such as IBM and Microsoft are investing a lot in this area. We at Cere Labs, an Artificial Intelligence startup based in Mumbai, also are working in this area, and have applied LDA and Word2Vec techniques, both giving us promising results: Latent Dirichlet Allocation (LDA) : LDA is a technique used mainly for topic modeling. You c an leverage on this topic modeling to find the similarity between documents. It is assumed that more the topics two documents overlap, more are the chances that those documents carry semantic similarity. You can study LDA in the following paper: https://www.cs.princeton.edu/~blei/papers/BleiNgJordan20...

Anomaly Detection based on Prediction - A Step Closer to General Artificial Intelligence

Anomaly detection refers to the problem of finding patterns that do not conform to expected behavior [1]. In the last article "Understanding Neocortex to Create Intelligence" , we explored how applications based on the workings of neocortex create intelligence. Pattern recognition along with prediction makes human brains the ultimate intelligent machines. Prediction help humans to detect anomalies in the environment. Before every action is taken, neocortex predicts the outcome. If there is a deviation from the expected outcome, neocortex detects anomalies, and will take necessary steps to handle them. A system which claims to be intelligent, should have anomaly detection in place. Recent findings using research on neocortex have made it possible to create applications that does anomaly detection. Numenta’s NuPIC using Hierarchical Temporal Memory (HTM) framework is able to do inference and prediction, and hence anomaly detection. HTM accurately predicts anomalies in real...