Skip to main content

Posts

Showing posts with the label One shot learning

Cognition and Bayesian

There is a growing consensus that the brain uses Bayesian to perform cognition. Our brain is capable of learning using only positive examples, unlike the approach taken in machine learning where there is a need to provide both positive and negative examples. Consider an example where a parent says to a child “Look at that dog!” A child is capable of categorizing all future dogs it looks at from only one or two examples. The brain of that child is generalizing using some form of Bayesian inference. Welcome to the world of One Shot Learning. The discovery that Bayes himself abandoned for unknown reasons, today stands at the forefront of making Artificial Intelligence a reality. Learning from few examples is what we are good at, and any intelligent machine is expected to do. Thanks to Pierre Simon Laplace who rediscovered it and gave Bayes' theorem a mathematical form, cognitive AI research uses Bayesian to make machines learn.         ...