Skip to main content

AlfaGo and the Future

What does it mean for Deep Learning to recently beat Go champion Lee Sedol? Or what did it mean back in 1997 for Deep Blue to beat chess champion Garry Kasparov? Is the purpose of AI to only demonstrate that it can win against humans, or is it much more than winning?

Such wins demonstrate the capabilities of AI, and open up new avenues for the tools and techniques used. In the case of Deep Blue developed by IBM, it was better search and evaluation algorithms, combined with a supercomputer to defeat a world champion. Similar AI algorithms were then applied to other applications including search engines.

AI community continued its fascination of winning in games involving intelligence, with IBM Watson turning out to be a winner of quiz show Jeopardy. Watson even received the first place prize of $1 million. The AI techniques such as Natural Language Processing and Machine Learning that Watson used to win the competition are today driving the Watson Cloud Platform to understand unstructured documents and create question answering systems.

AI has come a long way since Deep Blue’s win. Recently Google took up the challenge of creating a Deep Learning based AI called AlfaGo to beat the world champion of Go, and it was successful in doing so. The same algorithms that won the game of Go, also power Google’s softwares that recognize spoken words, understand natural language, classify images.

Deep Learning has now evolved enough that it was able to beat a Go champion, and it looks like it can win in any kind of competitive game involving human mind. It seems, the AI community might have to invent new games to further show capabilities of AI.

P.S: Looking forward to see a match between robots and the world champions of football, with no red cards, of course.

Comments

Popular posts from this blog

How is AI Saving the Future

Meanwhile the talk of AI being the number one risk of human extinction is going on, there are lot many ways it is helping humanity. Recent developments in Machine Learning are helping scientists to solve difficult problems ranging from climate change to finding the cure for cancer. It will be a daunting task for humans to understand enormous amount of data that is generated all over the world. Machine Learning is helping scientists to use algorithms that learn from data and find patterns. Below is a list of few of the problems AI is working on to help find solutions which otherwise would not have been possible: Cancer Diagnostics : Recently, scientists at University of California (UCLA) applied Deep Learning to extract features for achieving high accuracy in label-free cell classification. This technique will help in faster cancer diagnostics, and thus will save a lot of lives. Low Cost Renewable Energy : Artificial-intelligence is helping wind power forecasts of u...

In the World of Document Similarity

How does a human infer whether two documents are similar? This question has dazzled cognitive scientists, and is one area under which a lot of research is taking place. As of  now there is no product that is able to match or surpass human capability in finding the similarity in documents. But things are improving in this domain, and companies such as IBM and Microsoft are investing a lot in this area. We at Cere Labs, an Artificial Intelligence startup based in Mumbai, also are working in this area, and have applied LDA and Word2Vec techniques, both giving us promising results: Latent Dirichlet Allocation (LDA) : LDA is a technique used mainly for topic modeling. You c an leverage on this topic modeling to find the similarity between documents. It is assumed that more the topics two documents overlap, more are the chances that those documents carry semantic similarity. You can study LDA in the following paper: https://www.cs.princeton.edu/~blei/papers/BleiNgJordan20...

Anomaly Detection based on Prediction - A Step Closer to General Artificial Intelligence

Anomaly detection refers to the problem of finding patterns that do not conform to expected behavior [1]. In the last article "Understanding Neocortex to Create Intelligence" , we explored how applications based on the workings of neocortex create intelligence. Pattern recognition along with prediction makes human brains the ultimate intelligent machines. Prediction help humans to detect anomalies in the environment. Before every action is taken, neocortex predicts the outcome. If there is a deviation from the expected outcome, neocortex detects anomalies, and will take necessary steps to handle them. A system which claims to be intelligent, should have anomaly detection in place. Recent findings using research on neocortex have made it possible to create applications that does anomaly detection. Numenta’s NuPIC using Hierarchical Temporal Memory (HTM) framework is able to do inference and prediction, and hence anomaly detection. HTM accurately predicts anomalies in real...