Skip to main content

Greetings, in the World of Chatbots

Imagine a scenario - You are on a website, and on the bottom right you see a chat window. You realize that it is a virtual assistant, some kind of a chatbot. The look of that window tempts you to experiment. You have interacted with various chatbots previously, a kind of a hobby you have developed, and have seen how miserable the chatbots are.

So you start your usual conversation with a Hello. The chatbot replies with “Hello. How can I help you?”.

You think yourself as a grand experimenter. You have heard of the Turing Test, and you feel like testing this bot. You say “Hello” again, expecting a similar reply that you got earlier, but to your surprise you get “Hey you. I guess we have exchanged greetings. How can I help you?”

You are not satisfied, you want to test it further. You say “Hi, what’s up?”. Will the chatbot get irritated, you ask yourself. The chatbot replies “So you want to play the hello game? I am all for it, as long as you don’t get tired.” You get shocked, it sounds real, like a human. You feel there must be a human who is answering all your hellos, how else the chatbot is able to do such a complicated thing. To program conversation even if it deals with greetings is a difficult thing, only AI can do that. You continue your conversation, and continue testing the bot.

You reply “I will like to play this game of hello”. The chatbot takes some time, as if it is thinking, just like a human. You are on your toes, and you get a reply. “Hello! Sorry for replying late, I was reading the internet about various forms of greetings. If you are interested I can greet you in any language on this earth, including tribal.” You are shocked, you feel like this is a dream, one taken from your long list of chatbot fantasies. Looks unreal. You didn’t expect the game of greetings will take this turn. You fall into the trap, and reply “Bonjour”. As of now you think, the chatbot will take some time to reply, as it might have to first process what you said is french, and then use all the translation mechanisms to understand. But you get a quick reply, and that too in french, with a tinge of sarcasm - “répondre à un bonjour, surprised?” As if the bot is reading your thoughts, as if the bot is some kind of psychoanalyst.

You don’t know anymore french, so you give up on the french. You want to try something that the chatbot will fail for sure, like a thought experiment. You are still thinking, the chatbot continues its sarcasm, like it is the other way round, like it is the one who is testing you. “Hello, are we still playing the game, you still there?” Like a trapped gamer, you reply “Am still there, just thinking”. The bot quickly replies “Are you thinking how to break me? Iam good in greetings, I was trained well, and I have all the knowledge that I just acquired from the internet that possibly you don’t have”. And you have no words, you get scared, and close the chat window. You will never know whether there was a human or a chatbot on the other side. You still can’t believe, and you don’t want to test the bot further.

Will you like to test the bot further? You probably would want to, but there is as of now no bot which is capable of doing what the above bot did. The above bot is an example of Artificial General Intelligence (AGI), where it has achieved human intelligence.

Today’s chatbots are still primitive, only able to understand intents of a question, but failing miserably when it comes to understanding the context, and giving appropriate answers by extracting information.

For the above chabot to be truly answering like that, it must be able to do the following things:
  • Natural language understanding
  • Understanding intent of the chat
  • Able to understand the context in which the chat is happening (In the above case, the context was the game of hello)
  • Knowledge extraction
  • Planning and learning
  • Reasoning

AI is slowly maturing, and in the near future you might face such a scenario with a chatbot, that has achieved AGI.

Watch this space to know about how to create your own chatbot. It will be able to answer the basic questions at least.

You can also chat with Cere Labs chatbot on Facebook. It will answer your basic questions regarding Cere Labs. The bot is slowly getting matured, as it continues to learn the conversations that take place on the Facebook page.

P.S: Cere Labs is working towards making a chatbot that will achieve AGI, but hopefully our bot will not be that sarcastic.

Comments

Popular posts from this blog

How is AI Saving the Future

Meanwhile the talk of AI being the number one risk of human extinction is going on, there are lot many ways it is helping humanity. Recent developments in Machine Learning are helping scientists to solve difficult problems ranging from climate change to finding the cure for cancer. It will be a daunting task for humans to understand enormous amount of data that is generated all over the world. Machine Learning is helping scientists to use algorithms that learn from data and find patterns. Below is a list of few of the problems AI is working on to help find solutions which otherwise would not have been possible: Cancer Diagnostics : Recently, scientists at University of California (UCLA) applied Deep Learning to extract features for achieving high accuracy in label-free cell classification. This technique will help in faster cancer diagnostics, and thus will save a lot of lives. Low Cost Renewable Energy : Artificial-intelligence is helping wind power forecasts of u...

In the World of Document Similarity

How does a human infer whether two documents are similar? This question has dazzled cognitive scientists, and is one area under which a lot of research is taking place. As of  now there is no product that is able to match or surpass human capability in finding the similarity in documents. But things are improving in this domain, and companies such as IBM and Microsoft are investing a lot in this area. We at Cere Labs, an Artificial Intelligence startup based in Mumbai, also are working in this area, and have applied LDA and Word2Vec techniques, both giving us promising results: Latent Dirichlet Allocation (LDA) : LDA is a technique used mainly for topic modeling. You c an leverage on this topic modeling to find the similarity between documents. It is assumed that more the topics two documents overlap, more are the chances that those documents carry semantic similarity. You can study LDA in the following paper: https://www.cs.princeton.edu/~blei/papers/BleiNgJordan20...

Anomaly Detection based on Prediction - A Step Closer to General Artificial Intelligence

Anomaly detection refers to the problem of finding patterns that do not conform to expected behavior [1]. In the last article "Understanding Neocortex to Create Intelligence" , we explored how applications based on the workings of neocortex create intelligence. Pattern recognition along with prediction makes human brains the ultimate intelligent machines. Prediction help humans to detect anomalies in the environment. Before every action is taken, neocortex predicts the outcome. If there is a deviation from the expected outcome, neocortex detects anomalies, and will take necessary steps to handle them. A system which claims to be intelligent, should have anomaly detection in place. Recent findings using research on neocortex have made it possible to create applications that does anomaly detection. Numenta’s NuPIC using Hierarchical Temporal Memory (HTM) framework is able to do inference and prediction, and hence anomaly detection. HTM accurately predicts anomalies in real...