Skip to main content

Helping the Blind See


The Sense of Vision is taken for granted by us in our day to day life, but only a visually impaired person can understand the true value and necessity of Vision. But soon AI based computer vision systems can help the blind and visually impaired to navigate.

Tech giants like Google, Baidu, Facebook, Microsoft are working on a range of products that apply Deep Learning for the Visually Impaired. One of them being Image Captioning technology wherein the system describes the content of an image.  To accelerate further research and to boost the possible applications of this technology, Google made the latest version of their Image Captioning System available as an open source model in Tensorflow. It’s called “Show And Tell: A Neural Image Caption Generator”. The project can be found at https://github.com/tensorflow/models/tree/master/im2txt and the full paper can be found at https://arxiv.org/abs/1609.06647

The Show and Tell model is an example of an encoder-decoder neural network. It works by first "encoding" an image into a fixed-length vector representation, and then "decoding" the representation into a natural language description.

The image encoder is a deep convolutional neural network. This type of network is widely used for image tasks and is currently state-of-the-art for object recognition and detection. The Inception v3 image recognition model pretrained on the ILSVRC-2012-CLS image classification dataset is used as the encoder.
The decoder is a long short-term memory (LSTM) network. This type of network is commonly used for sequence modeling tasks such as language modeling and machine translation. In the Show and Tell model, the LSTM network is trained as a language model conditioned on the image encoding.
Words in the captions are represented with an embedding model. Each word in the vocabulary is associated with a fixed-length vector representation that is learned during training.
Caption Generated : a street light with a building in the background.

Caption Generated : a group of motorcycles parked in front of a building.

Caption Generated : a group of people walking down a street.

Caption Generated : a group of motorcycles parked next to each other.

Caption Generated : a city street filled with lots of traffic.

Caption Generated : a bus driving down a street next to tall building.

Caption Generated : a group of cars parked on the side of a street.

We at Cere Labs, an Artificial Intelligence startup based in Mumbai, have come with an application wherein we have used this technique and extended its application on Videos to continuously describe the content of Videos. Firstly, we have trained the Show And Tell Model on the MSCOCO image captioning data set to come with our custom model. Then we used OpenCV to obtain video frames from a particular video and these frames were then fed to the inference algorithm of Show And Tell which would caption these individual frames. To speed up the inference performance the frame rate for processing frames in Inference algorithm was tuned to obtain a smooth and synced video playback and caption generation. The results were awesome with some errors in the generated captions but they can be improved further through more data and training. This application was further extended to generate captions on feed received from camera so that the description is real time and can someday help the visually impaired and blind. The possibilities are enormous with applications even in Robotics.

We further plan to experiment and come up with more innovative applications of this promising technology.


By Amol Bhivarkar,
Researcher / Senior Software Developer,
Cere Labs


Comments

Popular posts from this blog

How is AI Saving the Future

Meanwhile the talk of AI being the number one risk of human extinction is going on, there are lot many ways it is helping humanity. Recent developments in Machine Learning are helping scientists to solve difficult problems ranging from climate change to finding the cure for cancer. It will be a daunting task for humans to understand enormous amount of data that is generated all over the world. Machine Learning is helping scientists to use algorithms that learn from data and find patterns. Below is a list of few of the problems AI is working on to help find solutions which otherwise would not have been possible: Cancer Diagnostics : Recently, scientists at University of California (UCLA) applied Deep Learning to extract features for achieving high accuracy in label-free cell classification. This technique will help in faster cancer diagnostics, and thus will save a lot of lives. Low Cost Renewable Energy : Artificial-intelligence is helping wind power forecasts of u...

In the World of Document Similarity

How does a human infer whether two documents are similar? This question has dazzled cognitive scientists, and is one area under which a lot of research is taking place. As of  now there is no product that is able to match or surpass human capability in finding the similarity in documents. But things are improving in this domain, and companies such as IBM and Microsoft are investing a lot in this area. We at Cere Labs, an Artificial Intelligence startup based in Mumbai, also are working in this area, and have applied LDA and Word2Vec techniques, both giving us promising results: Latent Dirichlet Allocation (LDA) : LDA is a technique used mainly for topic modeling. You c an leverage on this topic modeling to find the similarity between documents. It is assumed that more the topics two documents overlap, more are the chances that those documents carry semantic similarity. You can study LDA in the following paper: https://www.cs.princeton.edu/~blei/papers/BleiNgJordan20...

Anomaly Detection based on Prediction - A Step Closer to General Artificial Intelligence

Anomaly detection refers to the problem of finding patterns that do not conform to expected behavior [1]. In the last article "Understanding Neocortex to Create Intelligence" , we explored how applications based on the workings of neocortex create intelligence. Pattern recognition along with prediction makes human brains the ultimate intelligent machines. Prediction help humans to detect anomalies in the environment. Before every action is taken, neocortex predicts the outcome. If there is a deviation from the expected outcome, neocortex detects anomalies, and will take necessary steps to handle them. A system which claims to be intelligent, should have anomaly detection in place. Recent findings using research on neocortex have made it possible to create applications that does anomaly detection. Numenta’s NuPIC using Hierarchical Temporal Memory (HTM) framework is able to do inference and prediction, and hence anomaly detection. HTM accurately predicts anomalies in real...